

The impact of the Internet of Things (IoT) on smart Agriculture

Dr.M.Nagabhaska¹ , Mr.B.Kiran Kumar Reddy² Dr.C.H.BVL Sudheer³

¹ Assoc.Professor, MBA Department, Malla Reddy Engineering College, Secunderabad,

^{2,3}Asst.Professor, MBA Department, Malla Reddy Engineering College, Main campus, Secunderabad,

Email Id: drmupuri@gmail.com,

KEYWORDS

Smart Farming, Smart Agriculture, Application of IOT, Benefits of Agriculture.

ABSTRACT

Agricultural institutions can access modern technological tools because development of technology continues to advance steadily. The agricultural sector chooses knowledge processing as its primary preference in terms of IoT technology. Sensors introduced in the market allow users to acquire all available information. IoT has transformed every industry including smart agriculture through its base technology by shifting from fact-based to quantitative approaches. The "Internet of Things" (IoT) is a conceptual framework that connects physical things with sensors, actuators, processing functionality to achieve a common task through Internet connectivity. Internet of Things (IoT) describes connected internet-enabled products such as sensors along with computers and software objects according to Worldwide Guidelines Operation from the World Telecommunication Union. This smart agricultural breakthrough demonstrated in the paper offers strong indications of practical effects..

1. INTRODUCTION

The advancement of Internet of Things together with big data and cloud computing stands as the foundation for this theory that introduced smartness as a concept. The Farming IoT system consists of computerised monitors alongside cameras connected to computers which function together to enhance farmer efficiency. The computers operate on their own and enable communication between devices without human supervision. The device holds pre-installed knowledge and communication motivation for working with other system components. Smart farming development through IoT technology enables multiple agricultural industries to maximise productivity as well as enhance performance and global market reach and reduces requirements for human intervention and operational time and expenses. Modern sensors have become more efficient because technological advances have made them both modern and affordable while decreasing their size. Modern global agriculture needs to combine its industrial advancement with simultaneous agricultural sector collaboration between industries. Farming institutions that work across divisions have introduced positive transformations to worldwide agricultural systems.

These systems provide easy access to comprehensive solutions which enable practitioners to implement smart farming techniques without doubt. The solution to existing sector challenges is the practise of astute cultivation along with progressive agricultural advancement. A mobile phone alongside his IoT devices enables most of the required operations. Farmers can access required information and cheque on their fields whenever necessary.

2. Internet of Things (IoT)

Problem solution development depends largely on Internet of Things (IoT) to achieve its most effective results and vital outcomes. Various building components such as sensors and network components alongside electronic devices and applications form the Internet of Things (IoT). Knowledge effectiveness receives an enhancement through this system. Through IoT data moves across networks automatically while needing no human touch for operation.

Within the Internet of Things users need to relate to objects through their natural interfaces instead of human-based interfaces such as sensors and car drivers. The integrated product receives an address for network accessibility to exchange data through its assigned network address. Professionals from Gartner expect networked computer controls to reach 30 percent growth by 2016 ending compared to his 2015 figures. The researcher projects that these objects will number 26 billion during the year 2020.

Five factors contribute to increasing the efficiency of IoT technology.

- a) You can connect to the Internet using any laptop.
- b) Reduce physical exertion
- c) Enhanced accessibility
- d) Management of time
- e) Communication that is very effective

3. Smart Agriculture with IoT:

Agriculture is the fundamental foundation of economic development in India. Climate change represents the foremost challenge for traditional agriculture. Severe flooding, intense hurricanes, elevated temperatures, diminished precipitation, and various other climatic alterations are among the numerous effects. These factors lead to markedly diminished performance. Climate change frequently induces natural phenomena, including cyclical alterations in plant life cycles.

Enhancing production and reducing limitations in the agricultural industry necessitated innovative approaches and Internet of Things tactics. The Internet of Things (IoT) applies its attention to agriculture leading to solutions for major farming obstacles. Through Internet of Things systems farmers obtain extensive data which shows them important market trends and innovative breakthroughs.

Agricultural advancement and reform likely experience huge setbacks because of rural communalization but the system provides a basis for maintaining steady economic development. Our emphasis has thus far been on obtaining agricultural data and enhancing framework conditions. Following years of diligent effort, significant improvements in rural systems have been evidenced.

- a) Smart agriculture encompasses agricultural and food production methodologies that employ IoT, big data, and sophisticated analytics. IoT signifies the addition of sensors and automated and analytical technology systems to present agricultural operations. The main IoT applications for smart agriculture involve:
- b) Sensor-based systems function as monitoring tools which track crops, soil, fields, animals and storage facilities and all aspects that influence productivity.
- c) Three primary examples of intelligent agricultural vehicles are drones and autonomous robots and actuators.
- d) Smart farming environments that unite agricultural units through connectivity include smart greenhouses together with hydroponics facilities.
- e) Data analysis, visualization, and management system.

3.1. Highly efficient: Agriculture is becoming competitive. Soil degradation, diminished land availability, and heightened weather unpredictability compel farmers to enhance production. Through IoT-enabled agriculture farmers obtain real-time monitoring of their crops together with environmental factors. You possess the ability to swiftly assimilate information, anticipate issues prior to their manifestation, and make judicious judgements to mitigate them. The agricultural IoT solutions created by him provide automated functionalities like controlled watering systems and nutrient delivery and robotic crop management tools.

3.2. Expansion: Seventy percent of the world's population will call urban areas home when the count reaches nine billion. One way to reduce the length of the food supply chain is to employ greenhouses and hydroponic systems that are connected to the internet of things to provide these individuals with fresh produce. Supermarkets, rooftops, shipping containers, and, of course, people's homes can all serve as farms now that we have developed highly efficient closed agricultural systems.

3.3. Insufficient resources.: The agricultural IoT solutions created by him provide automated functionalities like controlled watering systems and nutrient delivery and robotic crop management tools.

3.4. Hygiene practices The application of Internet of Things in agriculture demonstrates its effectiveness for decreasing pesticide along with fertilizer usage. Precision agriculture method helps save both water energy and environment while

simultaneously decreasing pesticide and fertilizer requirements. With its implementation traditional farming methods yield clean organic products.

3.5. Agility: Process adaptability improves as a result of implementing IoT technology in agricultural fields. Live field tracking and predictive systems provide farmers with the capability to rapidly address modifications in weather patterns combined with humidity conditions and air quality as well as changes in field crop or soil conditions. Clothing crops from extreme weather conditions became possible through newly acquired skills of agricultural specialists.

3.6. Product quality has improved: The integration of data into agriculture operations results in an increased production of superior raw materials. Farmers gain improved knowledge of environmental-crop quality connections through the combination of soil and crop sensors and drone surveillance and mapping software. A networked system enables you to rebuild perfect production conditions which leads to better nutrient content in your products.

Every step in the process focuses on data collection for farmer and collaboration use. Usually the most important feature of an activity. It includes gadgets such as sensors, microphones, and creepy images. The second segment, as already mentioned, consists of agreements aimed at supporting the exchange of knowledge provided by machines. System connectivity requirements determine which network advancement such as GSM, LTE, Wi-Fi, and 3G you should utilize. Cloud management together with data processing and computer creativity belong to the third section. Cloud servers can be opened without limit, making them suitable for IoT frameworks. Survey results may be stored and processed on such servers. Cloud management is accessible on a pay-as-you-go basis and is increasingly being used for this purpose. The final component of the system is a big data analysis tool. The tool sifts through large amounts of data generated and stored in cloud storage to find important trends and patterns.

Agriculture IOT working steps:

- a) Intelligent mobile data collection
- b) Network-based data transfer
- c) Cloud-based data collection and processing

The process includes a combination of intelligent mobile data collection and network-based data transfer and cloud-based data collection and processing together with big data software for analysis.

4. Main applications

Agricultural methods at every level undergo basic changes when farmers adopt modern sensing technology and Internet of Things methods. Smart agriculture now makes possible unsustainable growth that exceeds all previous estimates thanks to the continuous merging of wireless sensors with the Internet of Things. The Internet of Things can help advance solutions to a variety of typical agricultural problems, including: B. Responding to droughts, optimizing yields, equity of supply, regulating water supply and issues by adopting smart agriculture principles.

4.1.Climate change: The farming sector experiences strong impacts from climate change activities. The failure to understand climate patterns negatively affects the both the amount and standard of agricultural production. The IoT technology exposes live data about current weather conditions. The agricultural areas possess interior and exterior sensors installed throughout them. Sensors in the environment gather environmental data as a basis to identify suitable plants for particular climate environments. Real-time weather tracking takes place through sensors installed in every area of the Internet of Things network to monitor precipitation, temperature and humidity data. Various sensors exist to track environmental factors that make up smart agriculture management systems. The sensors evaluate plant health status as well as climatic weather elements in the environment.

4.2.Precision Agriculture: Precision agriculture stands as one of the most recognized IoT applications which people also refer to as precision agriculture. Accuracy in agricultural control comes from applications like animal monitoring together with vehicle tracking and field observation and inventory monitoring among others. Precision agriculture exists to take sensor data and convert it into suitable reactions. The integration of sensors enables farmers to obtain data which they can analyze to make accurate decisions in the appropriate time window. The core components of efficient precision farming involve irrigation management and livestock management and vehicle tracking and other precision farming practices. The technology enables farmers to examine soil quality and additional vital information that drives operational effectiveness improvements.

4.3.Smart Greenhouses: Through Internet of Things technology greenhouses achieve intelligent functionality because weather stations operate according to predefined sets of instructions. The combination of IoT technology in greenhouses successfully

removed human interaction for operation while reducing the process expenses and yielding precise results. Placing Internet of Things photovoltaic sensors creates the opportunity to construct contemporary greenhouses which combine affordable construction with productivity. Real-time greenhouse observation becomes possible through sensors that capture data which is sent for precise monitoring of your greenhouse operations. Sensors allow you to monitor both greenhouse water usage along with its current state.

4.4.Data Analytics: Traditional database systems cannot store the amount of data which IoT devices generate. Smart farming depends on cloud storage solutions and complete IoT platforms to function properly. Systems of this type are expected to support improved task functionality in resulting systems. Large-scale data collection in IoT era mainly depends on sensors for information acquisition. Analytical tools process the data which gets converted into valuable information through analysis. Weather patterns and livestock as well as agricultural conditions become accessible by data analytical practices. Recurring technological advancements generate new knowledge points which ultimately helps users make sounder choices. IoT devices, sensors serve to track real-time plant conditions through data collection. Using predictive analytics enables users to obtain insights about crop choices thereby achieving better results from their decisions. Agricultural prognoses regarding upcoming weather conditions and crop performance can be derived from trend analysis by farmers.

4.5. Aerial Drones in Agriculture: Modern technological progress has completely transformed agricultural practices and agricultural drones now serve as the latest disruption in this sector. The use of drones covers both surface-level and aerial work in agriculture for crop examination and disease inspection services and for seeding while also involving herbicide distribution functions and data analysis tasks. Strategic planning based on real-time data combined with proper strategy has delivered drone technology as a momentum that added new possibilities to agricultural operations. The combination of thermal and multispectral sensors attached to drones permits detection of irrigation areas that need adjustments. After plants grow into maturity sensors evaluate their health while computing vegetation indices. The impact of smart drones upon the environment has reached a final reduction stage. The implementation of proper techniques has resulted in a significant reduction of the chemicals which enter groundwater systems. [6].

5. Impact of implementation

Large-scale implementation of agricultural IoT is possible with government support, so to speak. Support your decision-making process by providing user-friendly plans and strategies. Subsidies may provide equipment and bases that farmers cannot otherwise afford. Deficiencies in agricultural supply chains need to be addressed . To provide maximum benefits to farmers and consumers, agency positions must be verified and controlled .

5.1 Devices: Your first step in developing his IoT solution for agriculture requires choosing an equipment sensor (or building your own if necessary). The data you want to gather as well as the required solution outcome will determine your selection. The accuracy and reliability of the gathered data establish both product achievement and quality level.

5.2 The Brain: Data analysis must be part of any smart farming solution. The data being collected is useless if you can't understand it. Extracting valuable insights from the data you collect requires advanced data analysis skills, predictive algorithms, and machine learning.

5.3 Performing Routine Maintenance: The maintenance of agricultural IoT devices represents a significant problem because field sensors face high risks of damage. Your hardware needs to be made durable enough for repairability purposes. Replacing the sensor prematurely will occur if maintenance practices are not proper.

5.4 Mobility Capacity: The design of agricultural applications needs to prioritize their application in actual fields. The requirement exists for business owners along with operations managers to access information from both field location settings and remote locations using smartphones and desktop computers. Each connected device needs to function autonomously with wireless distance that exceeds minimum requirements for device-to-device communication as well as data delivery to central servers.

5.5 Smart Agriculture App Development Infrastructure.: Smart farming applications require a robust internal architecture (and the ability to manage data loads) to ensure proper operation. Additionally, you need to protect your internal systems. If you fail to protect your system effectively, there is a high chance of intrusion, data theft, or even control of your autonomous tractor.

5.6 Interdependence: Multiple agricultural locations must transmit data to hinder the widespread adoption of smart agriculture. The reliable connections between agricultural facilities must endure adverse weather conditions to provide continuous

operation [11]. The current development of universal standards for IoT devices has not stopped organizations from using multiple communication protocols in their devices. The solution to this problem depends on continued advancement of technologies including 5G mobile and space-based internet systems.

5.7 Amount of Data Collected Periodically: Finding an ideal data collection frequency becomes complicated since the agriculture industry handles a wide range of data types. The data collected by sensors in fields and the air together with environmental information from analytical systems and devices and sensor applications are subject to certain laws and legal restrictions. Fast and secure exchange of data remains as one of the greatest obstacles in the implementation of smart farming systems.

6. Conclusion

The current situation demands the application of smart agriculture throughout farming operations. Smart agriculture receives support through implementation of the Internet of Things technologies. Through agricultural applications of IoT various domains benefit from enhanced time-saving capabilities and better water conservation as well as crop observation and better ground maintenance and secure pest control techniques. IOS technology replaces human work and breaks traditional agricultural systems while producing multiple levels of intelligent farming execution. Farmers have used traditional forms of agriculture combined with their acquired knowledge throughout their entire history. The rural traditions are facing modifications because time has passed while they assimilate to modern transformational trends. Through Internet of Things (IoT) implementation in farming operations farm output would increase while firms could enhance all cultivation activities management. The survival of vast segments of the population depends on agriculture and it needs substantial improvement to meet present needs.

Reference

- [1] Babu Loganathan, Ganesh. "Smart Agriculture System With E-Carbage Using Iot." *International Journal of Modern Agriculture* 10, no. 1 (2021): 928-931.
- [2] Haseeb, Khalid, Ikram Ud Din, Ahmad Almogren, and Naveed Islam. "An energy efficient and secure IoT-based WSN framework: An application to smart agriculture." *Sensors* 20, no. 7 (2020): 2081
- [3] Miles, Badreddine, El-Bay Bourennane, Samia Boucherka, and Salim Chikhi. "A study of LoRaWAN protocol performance for IoT applications in smart agriculture." *Computer Communications* 164 (2020): 148-157.
- [4] Ratnaparkhi, Sanika, Suvaid Khan, Chandrakala Arya, Shailesh Khapre, Prabhishhek Singh, Manoj Diwakar, and Achyut Shankar. "Smart agriculture sensors in IOT: A review." *Materials Today: Proceedings* (2020).
- [5] Kassim, Mohamed Rawidean Mohd. "IoT Applications in Smart Agriculture: Issues and Challenges." In 2020 IEEE Conference on Open Systems (ICOS), pp. 19-24. IEEE, 2020.
- [6] Kumar, Dr A. Senthil, Dr AR, L. Ganesh Babu, and Dr G. Suresh. "Smart Agriculture Robo With Leaf Diseases Detection Using IOT." *European Journal of Molecular & Clinical Medicine* 7, no. 11 (2022): 2462-2469.
- [7] Marcu, Ioana, George Suciu, Cristina Bălăceanu, Alexandru Vulpe, and Ana-Maria Drăgulinescu. "Arrowhead technology for digitalization and automation solution: smart cities and smart agriculture." *Sensors* 20, no. 5 (2020): 1464.
- [8] Rasooli, Mohammad Wasi, Brij Bhushan, and Nagesh Kumar. "Applicability of wireless sensor networks & IoT in saffron & wheat crops: A smart agriculture perspective." *Int. J. Sci. Technol. Res* 9, no. 2 (2020): 2456-2461.
- [9] Prasad, Shitala, Sateesh K. Peddoju, and Debasish Ghosh. "Energy efficient mobile vision system for plant leaf disease identification." In 2014 IEEE Wireless Communications and Networking Conference (WCNC), pp. 3314-3319. IEEE, 2014.
- [10] Dhaware, Chaitali G., and K. H. Wanjale. "A modern approach for plant leaf disease classification which depends on leaf image processing." In 2017 International Conference on Computer Communication and Informatics (ICCCI), pp. 1-4. IEEE, 2017.
- [11] Singh, Vijai, and A. K. Misra. "Detection of unhealthy region of plant leaves using image processing and genetic algorithm." In 2015 International Conference on Advances in Computer Engineering and Applications, pp. 1028-1032. IEEE, 2015.